On the von Neumann and Frank-Wolfe Algorithms with Away Steps
نویسندگان
چکیده
The von Neumann algorithm is a simple coordinate-descent algorithm to determine whether the origin belongs to a polytope generated by a finite set of points. When the origin is in the interior of the polytope, the algorithm generates a sequence of points in the polytope that converges linearly to zero. The algorithm’s rate of convergence depends on the radius of the largest ball around the origin contained in the polytope. We show that under the weaker condition that the origin is in the polytope, possibly on its boundary, a variant of the von Neumann algorithm that includes away steps generates a sequence of points in the polytope that converges linearly to zero. The new algorithm’s rate of convergence depends on a certain geometric parameter of the polytope that extends the above radius but is always positive. Our linear convergence result and geometric insights also extend to a variant of the Frank-Wolfe algorithm with away steps for minimizing a strongly convex function over a polytope. ∗Tepper School of Business, Carnegie Mellon University, USA, [email protected] †Department of Mathematical Sciences, Carnegie Mellon University, USA, [email protected] ‡College of Business Administration, University of Illinois at Chicago, USA, [email protected]
منابع مشابه
A novel Frank-Wolfe algorithm. Analysis and applications to large-scale SVM training
Recently, there has been a renewed interest in the machine learning community for variants of a sparse greedy approximation procedure for concave optimization known as the Frank-Wolfe (FW) method. In particular, this procedure has been successfully applied to train large-scale instances of non-linear Support Vector Machines (SVMs). Specializing FW to SVM training has allowed to obtain efficient...
متن کاملVarious topological forms of Von Neumann regularity in Banach algebras
We study topological von Neumann regularity and principal von Neumann regularity of Banach algebras. Our main objective is comparing these two types of Banach algebras and some other known Banach algebras with one another. In particular, we show that the class of topologically von Neumann regular Banach algebras contains all $C^*$-algebras, group algebras of compact abelian groups and ...
متن کاملCalculating Different Topological Indices of Von Neumann Regular Graph of Z_(p^α )
By the Von Neumann regular graph of R, we mean the graph that its vertices are all elements of R such that there is an edge between vertices x,y if and only if x+y is a von Neumann regular element of R, denoted by G_Vnr (R). For a commutative ring R with unity, x in R is called Von Neumann regular if there exists x in R such that a=a2 x. We denote the set of Von Neumann regular elements by V nr...
متن کاملNonlinear $*$-Lie higher derivations on factor von Neumann algebras
Let $mathcal M$ be a factor von Neumann algebra. It is shown that every nonlinear $*$-Lie higher derivation$D={phi_{n}}_{ninmathbb{N}}$ on $mathcal M$ is additive. In particular, if $mathcal M$ is infinite type $I$factor, a concrete characterization of $D$ is given.
متن کاملThe James and von Neumann-Jordan type constants and uniform normal structure in Banach spaces
Recently, Takahashi has introduced the James and von Neumann-Jordan type constants. In this paper, we present some sufficient conditions for uniform normal structure and therefore the fixed point property of a Banach space in terms of the James and von Neumann-Jordan type constants and the Ptolemy constant. Our main results of the paper significantly generalize and improve many known results in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM Journal on Optimization
دوره 26 شماره
صفحات -
تاریخ انتشار 2016